ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 98416  (#1)

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 8,9

Пусть a, b, c – натуральные числа.
а) Докажите, что если  НОК(a, a + 5) = HOK(b, b + 5),  то  a = b.
б) Могут ли  НОК(a, b)  и  НОК(а + с, b + с)  быть равны?

Прислать комментарий     Решение

Задача 98406  (#2)

Темы:   [ Раскраски ]
[ Разные задачи на разрезания ]
[ Четность и нечетность ]
[ Таблицы и турниры (прочее) ]
Сложность: 3-
Классы: 7,8,9

У Игоря и Вали есть по белому квадрату 8×8, разбитому на клетки 1×1. Они закрасили по одинаковому числу клеток на своих квадратах в синий цвет. Докажите, что удастся так разрезать эти квадраты на доминошки 2×1, что и из доминошек Игоря и из доминошек Вали можно будет сложить по квадрату 8×8 с одной и той же синей картинкой.

Прислать комментарий     Решение

Задача 108085  (#3)

Темы:   [ Описанные четырехугольники ]
[ Перенос помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ ГМТ - прямая или отрезок ]
Сложность: 4-
Классы: 8,9

Отрезок AB пересекает две равные окружности и параллелен их линии центров, причём все точки пересечения прямой AB с окружностями лежат между A и B. Через точку A проводятся касательные к окружности, ближайшей к A, через точку B – касательные к окружности, ближайшей к B. Оказалось, что эти четыре касательные образуют четырёхугольник, содержащий внутри себя обе окружности. Докажите, что в этот четырёхугольник можно вписать окружность.

Прислать комментарий     Решение

Задача 98408  (#4)

Темы:   [ Правильные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Хорды и секущие (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 7,8,9

В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника.

Прислать комментарий     Решение

Задача 98409  (#5)

Темы:   [ Правило произведения ]
[ Степень вершины ]
[ Связность и разложение на связные компоненты ]
Сложность: 4
Классы: 8,9

Автор: Гришин А.

Имеется 20 бусинок десяти цветов, по две бусинки каждого цвета. Их как-то разложили в 10 коробок. Известно, что можно выбрать по бусинке из каждой коробки так, что все цвета будут представлены. Докажите, что число способов такого выбора есть ненулевая степень двойки.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .