ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Ищем верное утверждение. В тетради написано сто утверждений:
1) В этой тетради ровно одно ложное утверждение.
2) В этой тетради ровно два ложных утверждения.
...
100) В этой тетради ровно сто ложных утверждений.
Какое из этих утверждений верно, если известно, что только одно верное?

Вниз   Решение


Через точку пересечения высот остроугольного треугольника ABC проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.

ВверхВниз   Решение


В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой.

ВверхВниз   Решение


Автор: Белухов Н.

Пусть $AM$ – медиана неравнобедренного треугольника $ABC$, $T$ – точка касания вписанной окружности $\omega$ со стороной $BC$, $S$ – вторая точка пересечения $\omega$ с отрезком $AT$. Докажите, что вписанная окружность треугольника $\delta$, образованного прямыми $AM$, $BC$ и касательной к $\omega$ в точке $S$, касается описанной окружности треугольника $ABC$.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 66952  (#16 [9-11 кл])

Темы:   [ Касающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9,10,11

Автор: Бибиков П.

Рассмотрим две окружности $\Omega$ и $\omega$, касающиеся друг друга внутренним образом в точке $A$. Пусть хорда $BC$ окружности $\Omega$ касается окружности $\omega$ в точке $K$. Пусть также $O$ – центр $\omega$. Тогда окружность $BOC$ делит отрезок $AK$ пополам.
Прислать комментарий     Решение


Задача 66953  (#17 [9-11 кл])

Темы:   [ Общая касательная к двум окружностям ]
[ Радикальная ось ]
[ Вписанные и описанные окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4
Классы: 9,10,11

Дан остроугольный треугольник $ABC$. Точки $A_0$ и $C_0$ – середины меньших дуг соответственно $BC$ и $AB$ его описанной окружности. Окружность, проходящая через $A_0$ и $C_0$, пересекает прямые $AB$ и $BC$ в точках $P$ и $S$, $Q$ и $R$ соответственно (все эти точки различны). Известно, что $PQ\parallel AC$. Докажите, что $A_0P+C_0S=C_0Q+A_0R$
Прислать комментарий     Решение


Задача 66954  (#18 [10-11 кл])

Темы:   [ Вписанные и описанные окружности ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Теорема Птолемея ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 9,10,11

Автор: Белухов Н.

Пусть $AM$ – медиана неравнобедренного треугольника $ABC$, $T$ – точка касания вписанной окружности $\omega$ со стороной $BC$, $S$ – вторая точка пересечения $\omega$ с отрезком $AT$. Докажите, что вписанная окружность треугольника $\delta$, образованного прямыми $AM$, $BC$ и касательной к $\omega$ в точке $S$, касается описанной окружности треугольника $ABC$.
Прислать комментарий     Решение


Задача 66955  (#19 [10-11 кл])

Темы:   [ Вписанные и описанные окружности ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Автор: Tran Quang Hung

Точка $P$ лежит внутри выпуклого четырехугольника $ABCD$. Общие внутренние касательные к вписанным окружностям треугольников $PAB$ и $PCD$ пересекаются в точке $Q$, а общие внутренние касательные к вписанным окружностям треугольников $PBC$ и $PAD$ – в точке $R$. Докажите, что $P$, $Q$, $R$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 66956  (#20 [10-11 кл])

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
Сложность: 5
Классы: 9,10,11

Автор: Белухов Н.

Отображение $f$ ставит в соответствие каждому невырожденному треугольнику на плоскости окружность ненулевого радиуса, причем выполняются следующие условия:

– Если произвольное подобие $\sigma$ переводит треугольник $\Delta_1$ в $\Delta_2$, то $\sigma$ переводит окружность $f(\Delta_1)$ в $f(\Delta_2)$.

– Для любых четырех точек общего положения $A$, $B$, $C$, $D$ окружности $f(ABC)$, $f(BCD)$, $f(CDA)$ и $f(DAB)$ имеют общую точку.

Докажите, что для любого треугольника $\Delta$ окружность $f(\Delta)$ совпадает с окружностью девяти точек треугольника $\Delta$ .

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .