Страница: 1
2 >> [Всего задач: 6]
Дан равносторонний треугольник ABC. Для произвольной точки P
внутри треугольника рассмотрим точки A' и C' пересечения
прямых AP с BC и CP с AB. Найдите геометрическое место
точек P, для которых отрезки AA' и CC' равны.
|
|
Сложность: 3+ Классы: 7,8,9
|
Докажите, что если в числе 12008 между нулями вставить любое количество
троек, то получится число, делящееся на 19.
|
|
Сложность: 3+ Классы: 7,8,9
|
Натуральные числа а, b, c и d таковы, что ab = cd. Может ли число a + b + c + d оказаться простым?
|
|
Сложность: 4 Классы: 7,8,9
|
Прямоугольник размером 1×
k при всяком натуральном
k будем называть
полоской. При каких натуральных
n прямоугольник размером
1995×
n
можно разрезать на попарно различные полоски?
|
|
Сложность: 4 Классы: 8,9,10
|
Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом
один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.
Страница: 1
2 >> [Всего задач: 6]