ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98495
Темы:    [ Числовые таблицы и их свойства ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Дана таблица n×n, в каждой её клетке записано число, причём все числа различны. В каждой строке отметили наименьшее число, и все отмеченные числа оказались в разных столбцах. Затем в каждом столбце отметили наименьшее число, и все отмеченные числа оказались в разных строках. Докажите, что оба раза отметили одни и те же числа.


Решение

Наименьшее число во всей таблице, очевидно, было отмечено оба раза. По условию ни одно из чисел, стоящих с ним в одной строке (одном столбце), не было отмечено ни разу. Поэтому оба раза было также отмечено наименьшее число в таблице, полученной из данной вычеркиванием этих строки и столбца. И так далее.

Замечания

3 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2000/2001
Номер 22
вариант
Вариант осенний тур, основной вариант, 8-9 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .