ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 98105
УсловиеВ некотором королевстве было 32 рыцаря. Некоторые из них были вассалами
других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче
своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона.
Какое наибольшее число баронов могло быть при этих условиях? Решение Оценка. У 8 баронов должно быть 32 вассала, а самый богатый рыцарь не может быть ничьим вассалом. Ответ7 баронов. Замечания4 балла Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|