ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58029
Тема:    [ Композиции гомотетий ]
Сложность: 3
Классы: 9
В корзину
Прислать комментарий

Условие

Пусть H1 и H2 — две поворотные гомотетии. Докажите, что H1oH2 = H2oH1 тогда и только тогда, когда H1oH2(A) = H2oH1(A) для некоторой точки A.

Решение

Достаточно доказать, что если H1oH2(A) = H2oH1(A), то H1oH2 = H2oH1. Рассмотрим преобразование (H1oH2)-1oH2oH1. Это преобразование является параллельным переносом (произведение коэффициентов гомотетии равно 1, а сумма углов поворотов равна 0). Кроме того, это преобразование имеет неподвижную точку A. Параллельный перенос, имеющий неподвижную точку, является тождественным преобразованием. Следовательно, H1oH2 = H2oH1.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 19
Название Гомотетия и поворотная гомотетия
Тема Гомотетия и поворотная гомотетия
параграф
Номер 7
Название Композиции поворотных гомотетий
Тема Композиции гомотетий
задача
Номер 19.049B1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .