ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Петя взял произвольное натуральное число, умножил его на 5, результат снова умножил на 5, потом ещё на 5, и так далее.
Верно ли, что с какого-то момента все получающиеся у Пети числа будут содержать 5 в своей десятичной записи?

Вниз   Решение


На окружности имеются синие и красные точки. Разрешается добавить красную точку и поменять цвета её соседей, а также убрать красную точку и изменить цвета её бывших соседей. Пусть первоначально было всего две красные точки (менее двух точек оставлять не разрешается). Доказать, что за несколько разрешённых операций нельзя получить картину, состоящую из двух синих точек.

ВверхВниз   Решение


Даны два возрастающих массива x: array[1..k] of integer и y: array[1..l] of integer. Найти количество общих элементов в этих массивах, то есть количество тех целых t, для которых t = x[i] = y[j] для некоторых i и j. (Число действий порядка k + l.)

Вверх   Решение

Задача 64302
Темы:    [ Площадь параллелограмма ]
[ Четность и нечетность ]
[ Перебор случаев ]
Сложность: 3+
Классы: 6,7
В корзину
Прислать комментарий

Условие

На рисунке можно найти 9 прямоугольников. Известно, что у каждого из них длина и ширина – целые.
Сколько прямоугольников из этих девяти могут иметь нечётную площадь?


Решение

Заметим, что если отрезок разбит на два отрезка c целыми длинами, то возможны два случая: либо все три отрезка имеют чётную длину, либо два отрезка имеют нечётную длину и один – чётную. Если хотя бы по одному из измерений прямоугольника все отрезки – чётной длины, то и все площади чётные. Если же по обеим сторонам есть по два отрезка нечётной длины, то всего будет  2×2 = 4  нечётные площади.


Ответ

Либо ни одного, либо четыре.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада для 6-7 классов
год/номер
Номер 8 (2010 год)
Дата 2010-02-28
класс
1
Класс 6 класс
задача
Номер 6.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .