ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Сколькими способами натуральное число n можно представить в виде суммы
  а) k натуральных слагаемых?
  б) k неотрицательных целых слагаемых?
(Представления, отличающиеся порядком слагаемых, считаются различными.)

Вниз   Решение


В исследовательской лаборатории фирмы Robots&Co разработали новую модель робота. Главной особенностью данной модели робота является то, что он работает по заранее заданной программе, в которой могут присутствовать команды: сделать шаг на Юг, на Север, на Восток или на Запад. Робот исполняет программу строго последовательно и, дойдя до конца программы, останавливается. Специалисты из Robots&Co заинтересовались вопросом, сколько существует различных программ, состоящих из K инструкций, таких, что робот, выйдя из начала координат, придет в точку с координатами (X, Y). Оси координат располагаются параллельно сторонам света, и единица измерения, соответствует одному шагу робота. Напишите программу, которая дает ответ на этот вопрос.
Формат входных данных
Во входном файле находятся три числа K, X и Y (0 <= K <= 16, |X|, |Y| <= 16), разделенные пробелами.
Формат выходных данных
В выходной файл ваша программа должна поместить одно число — количество программ для робота.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 113]      



Задача 64545

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3

Первый член последовательности равен 934. Каждый следующий равен сумме цифр предыдущего, умноженной на 13.
Найдите 2013-й член последовательности.

Прислать комментарий     Решение

Задача 98361

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Обратный ход ]
Сложность: 3
Классы: 7,8,9

Последовательность {xn} определяется условиями:   xn+2 = xn1/xn+1   при  n ≥ 1.
Докажите, что среди членов последовательности найдётся ноль. Найдите номер этого члена.

Прислать комментарий     Решение

Задача 116925

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

На доске записаны в ряд сто чисел, отличных от нуля. Известно, что каждое число, кроме первого и последнего, является произведением двух соседних с ним чисел. Первое число – это 7. Какое число последнее?

Прислать комментарий     Решение

Задача 79347

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Четность и нечетность ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 11

Последовательность натуральных чисел {xn} строится по следующему правилу:  x1 = 2,  ...,  xn = [1,5xn–1].
Доказать, что последовательность  yn = (–1)xn  непериодическая.
Прислать комментарий     Решение


Задача 98176

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 8,9,10

Рассматривается числовой треугольник:

(первая строчка задана, а каждый элемент остальных строчек вычисляется как разность двух элементов, которые стоят над ним). В 1993-й строчке – один элемент. Найдите его.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .