|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Через вершину A равностороннего треугольника ABC проведена прямая, не пересекающая отрезок BC. По разные стороны от точки A на этой прямой взяты точки M и N так, что AM = AN = AB (точка B внутри угла MAC). Докажите, что прямые AB, AC, BN, CM образуют вписанный четырёхугольник. |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 246]
В треугольнике ABC проведены биссектрисы BL и AE углов ABC и BAC соответственно, которые пересекаются в точке O. Известно,что AB = BL, периметр треугольника ABC равен 28, BO = 2OL. Найдите AB.
В треугольнике KLM проведены биссектрисы LE и KF углов KLM и LKM соответственно, которые пересекаются в точке O. Известно,что KL = LE, периметр треугольника KLM равен 34, LO = 5OE. Найдите ML.
Сторона AB треугольника ABC равна 3, BC = 2AC, E — точка пересечения продолжения биссектрисы CD данного треугольника с описанной около него окружностью, DE = 1. Найдите AC.
AM — биссектриса треугольника ABC, BM = 2, CM = 3, D — точка пересечения продолжения AM с окружностью, описанной около данного треугольника, MD = 2. Найдите AB.
В параллелограмме ABCD на сторонах AB и BC выбраны точки
M и N соответственно, причём AM = CN, Q – точка пересечения отрезков AN и CM.
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 246] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|