|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Даны диаметр AB окружности и точка C на нем. Постройте на этой окружности точки X и Y, симметричные относительно прямой AB, так, чтобы прямые AX и YC были перпендикулярными. В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если описанные окружности треугольников ABB1 и ACC1 пересекаются в точке, лежащей на стороне BC, то |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]
По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола.
а) Может ли шар некоторого радиуса высекать на гранях какого-нибудь правильного тетраэдра круги радиусов 1, 2, 3 и 4? б) Тот же вопрос для шара радиуса 5.
Вершины 50-угольника делят окружность на 50 дуг, длины которых – 1, 2, 3, ..., 50 в некотором порядке. Известно, что каждая пара "противоположных" дуг (соответствующих противоположным сторонам 50-угольника) отличается по длине на 25. Докажите, что у 50-угольника найдутся две параллельные стороны.
Дракон заточил в темницу рыцаря и выдал ему 100 разных монет, половина из которых волшебные (какие именно – знает только дракон). Каждый день рыцарь раскладывает все монеты на две кучки (не обязательно равные). Если в кучках окажется поровну волшебных монет или поровну обычных, дракон отпустит рыцаря. Сможет ли рыцарь гарантированно освободиться не позже, чем
Верно ли, что любой выпуклый многоугольник можно по прямой разрезать на два меньших многоугольника с равными периметрами и
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|