ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]      



Задача 65826

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Соображения непрерывности ]
Сложность: 4-
Классы: 8,9,10,11

По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола.
  a) Пусть стол выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы в каждой точке края побывал каждый из муравьев?
  б) Пусть стол не обязательно выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы на краю не осталось точек, в которых не побывал ни один из муравьев?

Прислать комментарий     Решение

Задача 66331

Темы:   [ Тетраэдр (прочее) ]
[ Соображения непрерывности ]
Сложность: 4-
Классы: 8,9,10,11

а) Может ли шар некоторого радиуса высекать на гранях какого-нибудь правильного тетраэдра круги радиусов 1, 2, 3 и 4?

б) Тот же вопрос для шара радиуса 5.

Прислать комментарий     Решение

Задача 98592

Темы:   [ Вписанные и описанные многоугольники ]
[ Соображения непрерывности ]
Сложность: 4-
Классы: 8,9

Автор: Певзнер И.

Вершины 50-угольника делят окружность на 50 дуг, длины которых – 1, 2, 3, ..., 50 в некотором порядке. Известно, что каждая пара "противоположных" дуг (соответствующих противоположным сторонам 50-угольника) отличается по длине на 25. Докажите, что у 50-угольника найдутся две параллельные стороны.

Прислать комментарий     Решение

Задача 116267

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 8,9

Дракон заточил в темницу рыцаря и выдал ему 100 разных монет, половина из которых волшебные (какие именно – знает только дракон). Каждый день рыцарь раскладывает все монеты на две кучки (не обязательно равные). Если в кучках окажется поровну волшебных монет или поровну обычных, дракон отпустит рыцаря. Сможет ли рыцарь гарантированно освободиться не позже, чем
  а) на 50-й день?
  б) на 25-й день?

Прислать комментарий     Решение

Задача 64659

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Соображения непрерывности ]
[ Формула Герона ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 10,11

Верно ли, что любой выпуклый многоугольник можно по прямой разрезать на два меньших многоугольника с равными периметрами и
  а) равными наибольшими сторонами?
  б) равными наименьшими сторонами?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .