Страница:
<< 19 20 21 22 23 24 25 [Всего задач: 122]
|
|
|
Сложность: 4- Классы: 10,11
|
Дан параллелепипед ABCDA1B1C1D1. На лучах C1C, C1B1 и C1D1 отложены отрезки C1M, C1N и C1K, равные соответственно 5/2 CC1, 5/2 C1B1,
5/2 C1D1. В каком отношении плоскость, проходящая через точки M, N, K, делит объём параллелепипеда ABCDA1B1C1D1.
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Середина стороны треугольника и основание высоты, проведённой к этой стороне, симметричны относительно точки касания этой стороны с вписанной окружностью.
Докажите, что эта сторона составляет треть периметра треугольника.
Страница:
<< 19 20 21 22 23 24 25 [Всего задач: 122]