ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите неравенство для положительных значений переменных:   (a + b + c + d)² ≤ 4(a² + b² + c² + d²).

Вниз   Решение


На столе лежат 8 всевозможных горизонтальных полосок $1\times3$ из трёх квадратиков $1\times1$, каждый из которых либо белый, либо серый (см. рисунок). Разрешается переносить полоски в любых направлениях на любые (не обязательно целые) расстояния, не поворачивая и не переворачивая. Можно ли расположить полоски на столе так, чтобы все белые точки образовали многоугольник, ограниченный замкнутой несамопересекающейся ломаной, и все серые – тоже? (Полоски не должны перекрываться.)

Вверх   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 11]      



Задача 116913

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Точка Нагеля. Прямая Нагеля ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Формулы для площади треугольника ]
[ Момент инерции ]
Сложность: 5-
Классы: 9,10

Пусть M и I – точки пересечения медиан и биссектрис неравнобедренного треугольника ABC, а r – радиус вписанной в него окружности.
Докажите, что  MI = r/3  тогда и только тогда, когда прямая MI перпендикулярна одной из сторон треугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .