ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 182]      



Задача 98537

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 9,10,11

Высотой пятиугольника назовём отрезок перпендикуляра, опущенного из вершины на противоположную сторону, а медианой – отрезок, соединяющий вершину с серединой противоположной стороны. Известно, что в некотором пятиугольнике равны десять длин – длины всех высот и всех медиан. Докажите, что этот пятиугольник – правильный.

Прислать комментарий     Решение

Задача 111631

Темы:   [ Перегруппировка площадей ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 8,9

Докажите, что площадь правильного восьмиугольника равна произведению длин наибольшей и наименьшей диагоналей.

Прислать комментарий     Решение

Задача 111632

Темы:   [ Перегруппировка площадей ]
[ Правильные многоугольники ]
[ Вспомогательные равные треугольники ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3
Классы: 8,9

Четыре вершины правильного двенадцатиугольника расположены в серединах сторон квадрата (см. рис.).

Докажите, что площадь заштрихованной части в 12 раз меньше площади двенадцатиугольника.

Прислать комментарий     Решение

Задача 111658

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Правильные многоугольники ]
[ Шестиугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

Точка O, лежащая внутри правильного шестиугольника, соединена с вершинами. Возникшие при этом шесть треугольников раскрашены попеременно в красный и синий цвет. Докажите, что сумма площадей красных треугольников равна сумме площадей синих.

Прислать комментарий     Решение

Задача 116573

Темы:   [ Вписанные и описанные многоугольники ]
[ Правильные многоугольники ]
[ Хорды и секущие (прочее) ]
Сложность: 3
Классы: 10,11

Каково максимальное число попарно непараллельных отрезков с концами в вершинах правильного n-угольника?

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 182]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .