Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 182]
|
|
|
Сложность: 3 Классы: 9,10,11
|
Высотой пятиугольника назовём отрезок перпендикуляра, опущенного из вершины на противоположную сторону, а медианой – отрезок, соединяющий вершину с серединой противоположной стороны. Известно, что в некотором пятиугольнике равны десять длин – длины всех высот и всех медиан. Докажите, что этот пятиугольник – правильный.
Докажите, что площадь правильного восьмиугольника равна произведению длин наибольшей и наименьшей диагоналей.
Четыре вершины правильного двенадцатиугольника расположены в серединах сторон квадрата (см. рис.).
Докажите, что площадь заштрихованной части в 12 раз меньше площади двенадцатиугольника.
Точка O, лежащая внутри правильного шестиугольника, соединена с вершинами. Возникшие при этом шесть треугольников раскрашены попеременно в красный и синий цвет. Докажите, что сумма площадей красных треугольников равна сумме площадей синих.
|
|
|
Сложность: 3 Классы: 10,11
|
Каково максимальное число попарно непараллельных отрезков с концами в вершинах правильного n-угольника?
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 182]