|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи После урока Олег поспорил с Сашей, уверяя, что он знает такое натуральное число m, что число m/3 + m²/2 + m³/6 нецелое. Прав ли Олег? И если прав, то что это за число? За круглым столом сидят 13 богатырей из k городов, где 1 < k < 13. Каждый богатырь держит в руке золотой или серебряный кубок, причём золотых кубков тоже k. Князь повелел каждому богатырю передать свой кубок соседу справа и повторять это до тех пор, пока какие-нибудь два богатыря из одного города оба не получат золотые кубки. Доказать, что желание князя всегда будет исполнено. |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 501]
Длины трёх сторон четырёхугольника, вписанного в окружность радиуса 2
Длины трёх сторон четырёхугольника, вписанного в окружность радиуса 2,
Одинаковы и равны
В окружности проведены хорды AB и BC, причём
AB =
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 501] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|