Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 185]
|
|
|
Сложность: 4 Классы: 10,11
|
Квадрат со стороной 1 см разрезан на три выпуклых многоугольника. Может ли случиться, что диаметр каждого из них не превосходит
а) 1 см; б) 1,01 см; в) 1,001 см?
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Какие треугольники можно разрезать на три треугольника с равными радиусами описанных окружностей?
|
|
|
Сложность: 4 Классы: 5,6,7
|
План дворца шаха – это квадрат размером 6×6, разбитый на комнаты размером 1×1. В середине каждой стены между комнатами есть дверь. Шах сказал своему архитектору: "Cломай часть стен так, чтобы все комнаты стали размером 2×1, новых дверей не появилось, а путь между любыми двумя комнатами проходил не более, чем через N дверей". Какое наименьшее значение N должен назвать шах, чтобы приказ можно было выполнить?
|
|
|
Сложность: 4 Классы: 5,6,7
|
Дима разрезал картонный квадрат 8×8 по границам клеток на шесть частей (см. рисунок). Оказалось, что квадрат остался крепким: если положить его на стол и потянуть (вдоль стола) за любую часть в любом направлении, то весь квадрат потянется вместе с этой частью.
Покажите, как разрезать такой квадрат по границам клеток не менее чем на 27 частей, чтобы квадрат оставался
крепким и в каждой части было не более 16 клеток.
|
|
|
Сложность: 4+ Классы: 8,9,10
|
На рис. изображен шестиугольник, разбитый на чёрные и белые треугольники так, что каждые два треугольника имеют либо общую сторону (и тогда они окрашены в разные цвета), либо общую вершину, либо не имеют общих точек, а каждая сторона шестиугольника является стороной одного из черных треугольников.
Докажите, что десятиугольник разбить таким образом нельзя.
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 185]