ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 127]      



Задача 98611

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема синусов ]
[ Неравенства для углов треугольника ]
Сложность: 3+
Классы: 10,11

В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.

Прислать комментарий     Решение

Задача 102319

Темы:   [ Площадь круга, сектора и сегмента ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

Докажите или опровергните следующее утверждение: круг площадью $ {\frac{25}{8}}$ можно поместить внутрь треугольника со сторонами 3, 4 и 5.
Прислать комментарий     Решение


Задача 102493

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике боковая сторона равна 20, а диаметр описанной окружности равен 25. Найдите радиус вписанной окружности.

Прислать комментарий     Решение


Задача 102494

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известно, что AB = AC, высота AH равна 9, а диаметр описанной окружности равен 25. Найдите радиус вписанной окружности.

Прислать комментарий     Решение


Задача 108971

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Доказать, что если в треугольнике ABC со стороной  BC = 1  радиус ra вневписанной окружности вдвое больше радиуса r вписанной окружности, то площадь треугольника численно равна 2r.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .