ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 112]      



Задача 98196

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3-
Классы: 8,9,10,11

Автор: Фольклор

На гипотенузе AB прямоугольного треугольника ABC взяты такие точки M и N, что  BC = BM  и  AC = AN.  Докажите, что  ∠MCN = 45°.

Прислать комментарий     Решение

Задача 55534

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике на гипотенузе AB от вершины A отложим отрезок AD, равный катету AC, а от вершины B - отрезок BE, равный катету BC. Докажите, что длина отрезка DE равна диаметру окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение


Задача 53989

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

CH – высота прямоугольного треугольника ABC , проведённая из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH , BCH и ABC , равна CH .
Прислать комментарий     Решение


Задача 56847

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 3
Классы: 8

В треугольнике ABC угол C прямой. Докажите, что  r = (a + b - c)/2 и  rc = (a + b + c)/2.
Прислать комментарий     Решение


Задача 56848

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 3
Классы: 8

Пусть M — середина стороны AB треугольника ABC. Докажите, что CM = AB/2 тогда и только тогда, когда  $ \angle$ACB = 90o.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .