|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что высота прямоугольного треугольника, проведённая из вершины прямого угла, разбивает треугольник на два подобных треугольника. Каждая из двух сторон треугольника разделена на семь равных частей; соответствующие точки деления соединены отрезками. В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что A1C·BC = B1C·AC. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1001]
В треугольнике ABC, стороны которого a, b и c даны, проведена параллельно AC прямая MN так, что AM = BN. Найдите MN.
В треугольник с основанием a и высотой h вписан квадрат так, что две его вершины лежат на основании треугольника, а две другие – на боковых сторонах.
В треугольник, основание которого равно 48, а высота – 16, вписан прямоугольник с отношением сторон 5 : 9, причём большая сторона лежит на основании треугольника. Найдите стороны прямоугольника.
В треугольник, у которого основание равно 30, а высота – 10, вписан прямоугольный равнобедренный треугольник так, что его гипотенуза параллельна основанию данного треугольника, а вершина прямого угла лежит на этом основании. Найдите гипотенузу.
В параллелограмме ABCD сторона AB = 420. На стороне BC взята точка E так, что BE : EC = 5: 7, и проведена прямая DE, пересекающая продолжение AB в точке F. Найдите BF.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1001] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|