Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 80]
В некотором государстве каждый город соединён с каждым дорогой. Сумасшедший король хочет ввести на дорогах одностороннее движение так, чтобы выехав из любого города, в него нельзя было вернуться. Можно ли так сделать?
В поселке 20 жительниц. 1 марта одна из них узнала интересную новость и сообщила её всем своим подругам. 2 марта те сообщили новость всем своим подругам, и так далее. Может ли так случиться, что:
а) 15 марта ещё не все жительницы будут знать новость, а 18 марта уже
все?
б) 25 марта ещё не все жительницы будут знать новость, а 28 марта уже
все?
|
|
|
Сложность: 3- Классы: 8,9,10
|
Можно ли нарисовать на поверхности кубика Рубика такой замкнутый путь,
который проходит через каждый квадратик ровно один раз (через вершины
квадратиков путь не проходит)?
|
|
|
Сложность: 3 Классы: 6,7,8
|
Есть 20 карточек, у каждой из которых на двух сторонах написано по числу. При этом все числа от 1 до 20 написаны по два раза.
Доказать, что карточки можно разложить так, чтобы все числа сверху были различны.
Представим себе большой куб, склеенный из 27 меньших кубиков. Термит садится на центр грани одного из наружных кубиков и начинает прогрызать ход. Побывав в кубике, термит к нему уже не возвращается. Движется он при этом всегда параллельно
какому-нибудь ребру большого куба. Может ли термит прогрызть все 26 внешних кубиков и закончить свой ход в центральном кубике? Если возможно, покажите, каким должен быть путь термита.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 80]