Страница:
<< 5 6 7 8 9 10 11 >> [Всего задач: 52]
|
|
|
Сложность: 5 Классы: 8,9,10,11
|
В микросхеме 2000 контактов, первоначально любые два контакта соединены
отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода,
причем Вася (он начинает) за ход режет один провод, а Петя – либо два,
либо три провода.
Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает.
Кто из них выигрывает при правильной игре?
|
|
|
Сложность: 5+ Классы: 9,10,11
|
Двое играют в такую игру. Из кучки, где имеется 25 спичек, каждый берёт себе по очереди одну, две или три спички. Выигрывает тот, у кого в конце
игры – после того, как все спички будут разобраны, – окажется чётное число спичек.
а) Кто выигрывает при правильной игре – начинающий или его партнёр? Как он должен играть, чтобы выиграть?
б) Как изменится ответ, если считать, что выигрывает забравший нечётное число спичек?
в) Исследуйте эту игру в общем случае, когда спичек 2n + 1 и разрешено брать любое число спичек от 1 до m.
|
|
|
Сложность: 5+ Классы: 9,10,11
|
На столе лежат купюры
достоинством 1, 2,
.. ,
2
n тугриков. Двое ходят по очереди.
Каждым ходом игрок снимает со стола две купюры, большую отдает
сопернику, а меньшую забирает себе. Каждый стремится получить как
можно больше денег. Сколько тугриков получит начинающий при
правильной игре?
|
|
|
Сложность: 3- Классы: 7,8,9
|
Шахматный король стоит в левом
нижнем углу шахматной доски. Участвуют два игрока, которые ходят по очереди.
За один ход его можно передвинуть на
одно поле вправо, на одно поле вверх
или на одно поле по диагонали "вправо-вверх".
Выигрывает игрок, который поставит
короля в правый верхний угол доски.
Кто из игроков выигрывает при
правильной игре?
На клетчатой доске размером 23×23 клетки стоят четыре фишки: в левом нижнем и в правом верхнем углах доски – по белой фишке, а в левом верхнем и в правом нижнем углах - по чёрной. Белые и чёрные фишки ходят по очереди, начинают белые. Каждым ходом одна из фишек сдвигается на любую соседнюю (по стороне) свободную клетку. Белые фишки стремятся попасть в две соседние по стороне клетки. Могут ли чёрные им помешать?
Страница:
<< 5 6 7 8 9 10 11 >> [Всего задач: 52]