Страница:
<< 19 20 21 22 23 24 25 [Всего задач: 123]
Каждое из рёбер полного графа с 18 вершинами покрашено в один из двух цветов.
Докажите, что есть четыре вершины, все рёбра между которыми – одного цвета.
|
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Из 54 одинаковых единичных картонных квадратов сделали незамкнутую цепочку, соединив их шарнирно вершинами. Каждый квадрат (кроме крайних) соединён с соседями двумя противоположными вершинами. Можно ли этой цепочкой квадратов полностью закрыть поверхность куба 3×3×3?
|
|
|
Сложность: 4- Классы: 7,8,9
|
Выбежав после уроков на двор, каждый школьник кинул снежком ровно в одного другого школьника.
Докажите, что всех учащихся можно разбить на три команды так, что члены одной команды друг в друга снежками не кидали.
Страница:
<< 19 20 21 22 23 24 25 [Всего задач: 123]