ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 277]      



Задача 79462

Темы:   [ Теория алгоритмов (прочее) ]
[ Турниры и турнирные таблицы ]
Сложность: 3+
Классы: 11

Жюри олимпиады решило по её результатам сопоставить каждому участнику натуральное число таким образом, чтобы по этому числу можно было однозначно восстановить баллы, полученные участником за каждую задачу, и чтобы из каждых двух школьников большее число сопоставлялось тому, кто набрал большую сумму баллов. Помогите жюри решить эту задачу!

Прислать комментарий     Решение

Задача 98187

Темы:   [ Теория алгоритмов (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9

Автор: Вялый М.Н.

Первоначально на доске написано натуральное число A. Разрешается прибавить к нему один из его делителей, отличных от него самого и единицы. С полученным числом разрешается проделать аналогичную операцию, и т. д. Докажите, что из числа  A = 4  можно с помощью таких операций прийти к любому наперёд заданному составному числу.

Прислать комментарий     Решение

Задача 98271

Темы:   [ Теория алгоритмов (прочее) ]
[ Плоскость, разрезанная прямыми ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Оценка + пример ]
Сложность: 3+
Классы: 6,7,8

На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой).
Какое наименьшее число таких вопросов необходимо задать, чтобы узнать, лежит ли точка P внутри квадрата?

Прислать комментарий     Решение

Задача 32795

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 7,8,9

На международный конгресс приехало 578 делегатов из разных стран. Любые три делегата могут поговорить между собой без помощи остальных (при этом, возможно, одному из них придется переводить разговор двух других). Докажите, что всех делегатов можно поселить в двухместных номерах гостиницы таким образом, чтобы любые двое, живущие в одном номере, могли поговорить без посторонней помощи.
Прислать комментарий     Решение


Задача 35691

Темы:   [ Теория алгоритмов (прочее) ]
[ Теория вероятностей (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

В одной из трех коробок лежит приз, две другие коробки пустые. Вы не знаете, в какой из коробок находится приз, а ведущий знает. Вы должны показать на одну из коробок, в которой по Вашему мнению находится приз. После этого ведущий открывает одну из двух оставшихся коробок. Так как он не хочет сразу отдавать приз, он открывает пустую коробку. После этого Вам предлагается окончательно выбрать коробку. Можете ли Вы выиграть приз с вероятностью, большей 1/2?
Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 277]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .