ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 18]      



Задача 109011

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Теорема Безу. Разложение на множители ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 4-
Классы: 8,9,10

Найти решение системы
  x4 + y4 = 17,
  x + y = 3.

Прислать комментарий     Решение

Задача 77953

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Симметрические системы. Инволютивные преобразования ]
Сложность: 2+
Классы: 8,9

Решить систему пятнадцати уравнений с пятнадцатью неизвестными:   x1x2 = x2x3 = ... = x14x15 = x15x1 = 1.

Прислать комментарий     Решение

Задача 86499

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Симметрические системы. Инволютивные преобразования ]
[ Неопределено ]
Сложность: 3-
Классы: 8,9,10

Решите систему уравнений:
    1 – x1x2 = 0,
    1 – x2x3 = 0,
    ...
    1 – x2000x2001 = 0,
    1 – x2001x1 = 0.

Прислать комментарий     Решение

Задача 77961

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Симметрические системы. Инволютивные преобразования ]
Сложность: 3
Классы: 9,10,11

Решить систему уравнений:   x1x2 = x2x3 = ... = xn–1xn = xnx1 = 1.

Прислать комментарий     Решение

Задача 73607

Темы:   [ Иррациональные уравнения ]
[ Симметрические системы. Инволютивные преобразования ]
[ Методы решения задач с параметром ]
Сложность: 4-
Классы: 8,9,10

Автор: Ионин Ю.И.

Пусть p – произвольное вещественное число. Найдите все такие x, что сумма кубических корней из чисел  1 – x  и  1 + x  равна p.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .