ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 30263

Темы:   [ Многочлены (прочее) ]
[ Многочлен нечетной степени имеет действительный корень ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9,10,11

Автор: Жуков Г.

Найдите все n, при которых для любых двух многочленов P(x) и Q(x) степени n найдутся такие одночлены axk и bxl
(0 ≤ k ≤ n,  0 ≤ l ≤ n),  что графики многочленов  P(x) + axk  и  Q(x) + bxl  не будут иметь общих точек.

Прислать комментарий     Решение

Задача 110123

Темы:   [ Свойства коэффициентов многочлена ]
[ Многочлен нечетной степени имеет действительный корень ]
Сложность: 4-
Классы: 9,10,11

Квадратные трёхчлены  P(x) = x² + ax + b  и  Q(x) = x² + cx + d  таковы, что уравнение  P(Q(x)) = Q(P(x))  не имеет действительных корней.
Докажите, что  b ≠ d .

Прислать комментарий     Решение

Задача 110149

Темы:   [ Свойства коэффициентов многочлена ]
[ Многочлен нечетной степени имеет действительный корень ]
[ Процессы и операции ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4
Классы: 10,11

Автор: Храмцов Д.

Пусть многочлен  P(x) = anxn + an–1xn–1 + ... + a0  имеет хотя бы один действительный корень и  a0 ≠ 0.  Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи P(x), можно получить из него число a0 так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.

Прислать комментарий     Решение

Задача 61252

Темы:   [ Кубические многочлены ]
[ Графики и ГМТ на координатной плоскости ]
[ Перенос помогает решить задачу ]
[ Многочлен нечетной степени имеет действительный корень ]
[ Возрастание и убывание. Исследование функций ]
[ Производная и экстремумы ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 10,11

Докажите, что
  а) при  p ≥ 0  график многочлена  x³ + px + q  пересекает каждую горизонтальную прямую ровно в одной точке;
  б) при  p < 0  график пересекает некоторые горизонтальные прямые в трёх точках;
  в) при  p < 0  график имеет один минимум и один максимум;
  г) абсциссы точек минимума и максимума противоположны.

Прислать комментарий     Решение

Задача 109533

Темы:   [ Кубические многочлены ]
[ Теорема о промежуточном значении. Связность ]
[ Теория игр (прочее) ]
[ Производная и экстремумы ]
[ Многочлен нечетной степени имеет действительный корень ]
Сложность: 3+
Классы: 9,10,11

На доске написано:  x³ + ...x² + ...x + ... = 0.  Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .