Страница:
<< 1 2 [Всего задач: 10]
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдите все n, при которых для любых двух многочленов P(x) и Q(x) степени n найдутся такие одночлены axk и bxl
(0 ≤ k ≤ n, 0 ≤ l ≤ n), что графики многочленов P(x) + axk и Q(x) + bxl не будут иметь общих точек.
|
|
Сложность: 4- Классы: 9,10,11
|
Квадратные трёхчлены P(x) = x² + ax + b и Q(x) = x² + cx + d таковы, что уравнение P(Q(x)) = Q(P(x)) не имеет действительных корней.
Докажите, что b ≠ d .
|
|
Сложность: 4 Классы: 10,11
|
Пусть многочлен P(x) = anxn + an–1xn–1 + ... + a0 имеет хотя бы один действительный корень и a0 ≠ 0. Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи P(x), можно получить из него число a0 так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что
а) при p ≥ 0 график многочлена x³ + px + q пересекает каждую горизонтальную прямую ровно в одной точке;
б) при p < 0 график пересекает некоторые горизонтальные прямые в трёх точках;
в) при p < 0 график имеет один минимум и один максимум;
г) абсциссы точек минимума и максимума противоположны.
|
|
Сложность: 3+ Классы: 9,10,11
|
На доске написано: x³ + ...x² + ...x + ... = 0. Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?
Страница:
<< 1 2 [Всего задач: 10]