ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Незнайка хвастал своими выдающимися способностями умножать числа "в уме". Чтобы его проверить, Знайка предложил ему написать какое-нибудь число, перемножить его цифры и сказать результат. – "1210", – немедленно выпалил Незнайка. – "Ты неправ!" – сказал, подумав, Знайка. Как он обнаружил ошибку, не зная исходного числа?

Вниз   Решение


В обыкновенном наборе домино 28 косточек. Сколько косточек содержал бы набор домино, если бы значения, указанные на косточках, изменялись не от 0 до 6, а от 0 до 12?

ВверхВниз   Решение


На какое максимальное число кусков можно разделить круглый блинчик при помощи трех прямолинейных разрезов?

ВверхВниз   Решение


Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?

ВверхВниз   Решение


Найти все такие натуральные числа p, что p и  2p² + 1  – простые.

ВверхВниз   Решение


Имеются две одинаковых шестеренки по 14 зубьев на общей оси. Их совместили и выбили четыре пары зубьев.
Доказать, что шестеренки можно повернуть так, что они образуют полноценную шестеренку (без дырок).

ВверхВниз   Решение


Пусть a, b, c – стороны треугольника, p – его полупериметр, а r и R – радиусы вписанной и описанной окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство

ВверхВниз   Решение


Найдите значение выражения 1!*3-2!*4+3!*5-4!*6+...-2000!*2002+2001!.

ВверхВниз   Решение


Встречается ли в треугольнике Паскаля число 1999?

ВверхВниз   Решение


Автор: Фомин С.В.

Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 157]      



Задача 58313

Темы:   [ Правило произведения ]
[ Системы точек и отрезков (прочее) ]
Сложность: 3
Классы: 8,9

На окружности отмечено десять точек. Сколько существует незамкнутых несамопересекающихся девятизвенных ломаных с вершинами в этих точках?

Прислать комментарий     Решение

Задача 60347

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8

Сколько существует девятизначных чисел, сумма цифр которых чётна?

Прислать комментарий     Решение

Задача 97962

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
[ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3
Классы: 8,9

Автор: Фомин С.В.

Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?

Прислать комментарий     Решение

Задача 60345

Темы:   [ Правило произведения ]
[ Формула включения-исключения ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Пассажир оставил вещи в автоматической камере хранения, а когда пришёл получать вещи, выяснилось, что он забыл номер. Он только помнит, что в номере были числа 23 и 37. Чтобы открыть камеру, нужно правильно набрать пятизначный номер. Каково наименьшее количество номеров нужно перебрать, чтобы наверняка открыть камеру?

Прислать комментарий     Решение

Задача 31377

Темы:   [ Правило произведения ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 6,7,8,9

Имеются две одинаковых шестеренки по 14 зубьев на общей оси. Их совместили и выбили четыре пары зубьев.
Доказать, что шестеренки можно повернуть так, что они образуют полноценную шестеренку (без дырок).

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .