ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В треугольнике ABC угол A равен 40°. Треугольник случайным образом бросают на стол.
Найдите вероятность того, что вершина A окажется восточнее двух других вершин.

Вниз   Решение


Коля и Макс живут в городе с треугольной сеткой дорог (см. рисунок). В этом городе передвигаются на велосипедах, при этом разрешается поворачивать только налево. Коля поехал в гости к Максу и по дороге сделал ровно 4 поворота налево. На следующий день Макс поехал к Коле и приехал к нему, совершив только один поворот налево. Оказалось, что длины их маршрутов одинаковы. Изобразите, каким образом они могли ехать (дома Коли и Макса отмечены).

ВверхВниз   Решение


Основанием пирамиды SABC является прямоугольный треугольник ABC ( C – вершина прямого угла). Все боковые грани пирамиды наклонены к её основанию под одинаковым углом, равным arcsin . Найдите площадь боковой поверхности пирамиды, если SO – высота пирамиды, AO = 1 , BO = 3 .

ВверхВниз   Решение


Две окружности радиуса R касаются в точке K. На одной из них взята точка A, на другой — точка B, причем $ \angle$AKB = 90o. Докажите, что AB = 2R.

ВверхВниз   Решение


Дан параллелограмм ABCD. Докажите, что подерная окружность точки D относительно треугольника ABC проходит через точку пересечения его диагоналей.

ВверхВниз   Решение


Как, не имея никаких измерительных средств, отмерить 50 см от шнурка, длина которого ⅔ метра?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 831]      



Задача 54775

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 2-
Классы: 6,7

Один из четырёх углов, образующихся при пересечении двух прямых, равен 41°. Чему равны три остальных угла?

Прислать комментарий     Решение

Задача 32038

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7,8

Можно ли провести из одной точки на плоскости пять лучей так, чтобы среди образованных ими углов было ровно четыре острых?
Рассматриваются углы не только между соседними, но и между любыми двумя лучами.

Прислать комментарий     Решение

Задача 53930

Темы:   [ Биссектриса угла ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 2
Классы: 8,9

Биссектрисы внутреннего и внешнего углов при вершине A треугольника ABC пересекают прямую BC в точках P и Q.
Докажите, что окружность, построенная на отрезке PQ как на диаметре, проходит через точку A.

Прислать комментарий     Решение


Задача 54751

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Необычные построения (прочее) ]
Сложность: 2
Классы: 8,9

На линейке отмечены три деления: 0, 2 и 5. Как отложить с её помощью отрезок, равный 6?

Прислать комментарий     Решение

Задача 88215

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Необычные конструкции ]
[ Обыкновенные дроби ]
Сложность: 2
Классы: 5,6,7

Как, не имея никаких измерительных средств, отмерить 50 см от шнурка, длина которого ⅔ метра?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 831]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .