ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Сумма трёх натуральных чисел, являющихся точными квадратами, делится на 9.
Докажите, что из них можно выбрать два, разность которых также делится на 9.

Вниз   Решение


Золотоискатель Джек добыл 9 кг золотого песка. Сможет ли он за три взвешивания отмерить 2 кг песка с помощью чашечных весов: а) с двумя гирями  — 200 г и 50 г; б) с одной гирей 200 г?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 160]      



Задача 88127

Тема:   [ Взвешивания ]
Сложность: 2-
Классы: 5,6,7

Из набора гирек с массами 1, 2, ..., 101 г потерялась гирька массой 19 г. Можно ли оставшиеся 100 гирек разложить на две кучки по 50 гирек в каждой так, чтобы массы обеих кучек были одинаковы?
Прислать комментарий     Решение


Задача 88068

Тема:   [ Взвешивания ]
Сложность: 2
Классы: 5,6,7

Золотоискатель Джек добыл 9 кг золотого песка. Сможет ли он за три взвешивания отмерить 2 кг песка с помощью чашечных весов: а) с двумя гирями  — 200 г и 50 г; б) с одной гирей 200 г?
Прислать комментарий     Решение


Задача 88202

Тема:   [ Взвешивания ]
Сложность: 2
Классы: 5,6,7

Как при помощи чашечных весов без гирь разделить 24 кг гвоздей на две части  — 9 и 15 кг?
Прислать комментарий     Решение


Задача 102822

Темы:   [ Взвешивания ]
[ Троичная система счисления ]
Сложность: 2
Классы: 6,7

Продавец с гирями. Четырьмя гирями продавец может взвесить любое целое число килограммов, от 1 до 40 включительно. Общая масса гирь равна 40 кг. Какими гирями располагает продавец?
Прислать комментарий     Решение


Задача 102983

Тема:   [ Взвешивания ]
Сложность: 2
Классы: 5

Имеются чашечные весы без гирь и 3 одинаковые по внешнему виду монеты, одна из которых фальшивая: она легче настоящих (настоящие монеты одного веса). Сколько надо взвешиваний, чтобы определить фальшивую монету?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 160]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .