|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В некоторой школе каждый школьник знаком с 32 школьницами, а каждая школьница – с 29 школьниками. Кого в школе больше: школьников или школьниц и во сколько раз? Даны два массива x[1]≤...≤x[k] и y[1]≤...≤y[l]. "Соединить" их в массив z[1]≤...≤z[m] ( m = k + l; каждый элемент должен входить в массив z столько раз, сколько раз он входит в общей сложности в массивы x и y). Число действий порядка m. Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100. В комнате стоят трёхногие табуретки и четвероногие стулья. Когда на все
эти сидячие места уселись люди, в комнате оказалось 39 ног. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 368]
Фишка стоит на одном из полей бесконечной в обе стороны клетчатой полоски бумаги. Она может сдвигаться на m полей вправо или на n полей влево.
Докажите, что уравнение 3x² + 2 = y² нельзя решить в целых числах.
Докажите, что уравнение x/y + y/z + z/x = 1 неразрешимо в натуральных числах.
Попробуйте разменять 25-рублёвую купюру одиннадцатью купюрами достоинством 1, 3 и 5 рублей.
В комнате стоят трёхногие табуретки и четвероногие стулья. Когда на все
эти сидячие места уселись люди, в комнате оказалось 39 ног.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 368] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|