|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что растяжение плоскости является аффинным преобразованием. Дан произвольный центрально-симметричный шестиугольник. На его сторонах, как на основаниях, построены во внешнюю сторону правильные треугольники. Доказать, что середины отрезков, соединяющих вершины соседних треугольников, образуют правильный шестиугольник. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]
На сторонах треугольника ABC внешним образом построены правильные треугольники ABC1 , AB1C и A1BC . Пусть P и Q — середины отрезков A1B1 и A1C1 . Докажите, что треугольник APQ правильный.
а) эти отрезки равны между собой; б) эти отрезки пересекаются в одной точке; в) если эта точка находится внутри треугольника ABC , то сумма расстояний от неё до трёх вершин треугольника равна длине каждого из отрезков AA1 , BB1 , CC1 .
б) Внутри треугольника ABC, все углы которого меньше 120o, взята точка O, из которой его стороны видны под углом 120o. Докажите, что сумма расстояний от точки O до вершин равна (a2 + b2 + c2)/2 + 2
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|