ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Отрезок MN, параллельный стороне CD четырехугольника ABCD, делит его площадь пополам (точки M и N лежат на сторонах BC и AD). Длины отрезков, проведенных из точек A и B параллельно CD до пересечения с прямыми BC и AD, равны a и b. Докажите, что  MN2 = (ab + c2)/2, где c = CD.

Вниз   Решение


M – множество точек на плоскости. Точка O называется "почти центром симметрии" множества M, если из M можно выбросить одну точку так, что для оставшегося множества O является центром симметрии в обычном смысле. Сколько "почти центров симметрии" может иметь конечное множество на плоскости?

ВверхВниз   Решение


Косинус угла между скрещивающимися прямыми AB и CD равен . Точки E и F являются серединами отрезков AB и CD соответственно, а прямая EF перпендикулярна прямым AB и CD . Найдите угол ACB , если известно, что AB = 2 , CD = 2 , EF = .

ВверхВниз   Решение


В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединён ровно с пятью другими?

ВверхВниз   Решение


На плоскости даны две прямые и точка M. Найдите на одной из прямых такую точку X, что отрезок MX делится другой прямой пополам.

ВверхВниз   Решение


На доске размером 8×8 в углу расставлены 9 фишек в форме квадрата 3×3. Любая фишка может прыгать через другую фишку на свободную клетку (по горизонтали, вертикали или диагонали). Можно ли за некоторое количество прыжков расставить фишки в форме такого же квадрата в каком-либо другом углу доски?

ВверхВниз   Решение


На доске $6\times6$ расставили шесть не угрожающих друг другу ладей. Затем каждое не занятое ладьёй поле покрасили по такому правилу: если ладьи, угрожающие этому полю, находятся от него на одинаковом расстоянии, то это поле закрашивают в красный цвет, а если на разном – то в синий цвет. Могли ли все не занятые поля оказаться
  а) красными;
  б) синими?

ВверхВниз   Решение


Все грани призмы ABCDABCD₁ касаются некоторого шара. Основанием призмы служит квадрат ABCD со стороной, равной 5. Угол CCD ─ острый, а ∠CCB = arctg ⁵⁄₃. Найдите ∠CCD, угол между боковым ребром и плоскостью основания призмы, а также расстояние от точки C до точки касания шара с плоскостью AAD.

ВверхВниз   Решение


В классе 30 человек. Может ли быть так, что 9 из них имеют по 3 друга (в этом классе), 11 – по 4 друга, а 10 – по 5 друзей?

ВверхВниз   Решение


Найти объём правильной четырёхугольной пирамиды, стороны основания которой a, а плоские углы при вершине равны углам наклона боковых рёбер к плоскости основания.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 151]      



Задача 110493

Темы:   [ Объем тетраэдра и пирамиды ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 10,11

Основанием пирамиды служит прямоугольный треугольник с острым углом . Каждое боковое ребро равно и наклонено к плоскости основания под углом . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 111120

Темы:   [ Объем тетраэдра и пирамиды ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Пусть V ─ объём тетраэдра, S₁ и S₂ ─ площади двух граней, a ─ длина их общего ребра, φ ─ величина двугранного угла между
ними. Докажите, что V = 
2
3
 · 
SS₂ sin φ
a
.
Прислать комментарий     Решение


Задача 35491

Тема:   [ Объем тетраэдра и пирамиды ]
Сложность: 3+
Классы: 10,11

Докажите, что если расстояния между скрещивающимися рёбрами тетраэдра равны h1, h2, h3, то его объём не меньше ⅓ h1h2h3.

Прислать комментарий     Решение

Задача 98438

Темы:   [ Объем тетраэдра и пирамиды ]
[ Боковая поверхность тетраэдра и пирамиды ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

В море плавает предмет, имеющий форму выпуклого многогранника.
Может ли случиться, что 90% его объёма находится ниже уровня воды и при этом больше половины его поверхности находится выше уровня воды?

Прислать комментарий     Решение

Задача 76419

Тема:   [ Объем тетраэдра и пирамиды ]
Сложность: 3+
Классы: 10,11

Найти объём правильной четырёхугольной пирамиды, стороны основания которой a, а плоские углы при вершине равны углам наклона боковых рёбер к плоскости основания.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 151]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .