ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В некотором государстве каждый город соединён с каждым дорогой. Сумасшедший король хочет ввести на дорогах одностороннее движение так, чтобы выехав из любого города, в него нельзя было вернуться. Можно ли так сделать?

Вниз   Решение


Отличник Поликарп составлял максимальное пятизначное число, которое состоит из различных нечётных цифр. Двоечник Колька составлял минимальное пятизначное число, которое состоит из различных чётных цифр. Какие числа должны были составить Поликарп и Колька?

ВверхВниз   Решение


У двух человек было два квадратных торта. Каждый сделал на своем торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть?

ВверхВниз   Решение


Пусть  p = am10m + am–110m–1 + ... + a0  – простое число, записанное в десятичной системе счисления. Докажите, что многочлен
P(x) = amxm + am–1xm–1 + ... + a1x + a0  неприводим над целыми числами.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 75506

Темы:   [ Неприводимые многочлены ]
[ Комплексные числа помогают решить задачу ]
Сложность: 5+
Классы: 11

Пусть  p = am10m + am–110m–1 + ... + a0  – простое число, записанное в десятичной системе счисления. Докажите, что многочлен
P(x) = amxm + am–1xm–1 + ... + a1x + a0  неприводим над целыми числами.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .