ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В треугольной пирамиде противоположные рёбра попарно равны. Докажите, что центры описанной и вписанной сфер совпадают.

Вниз   Решение


Известно, что  f(x), g(x) и h(x) – квадратные трёхчлены. Может ли уравнение  f(g(h(x)))  = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?

ВверхВниз   Решение


Дан многочлен степени 2022 с целыми коэффициентами и со старшим коэффициентом 1. Какое наибольшее число корней он может иметь на интервале  (0, 1)?

ВверхВниз   Решение


На плоскости дано N точек, никакие три из которых не лежат на одной прямой. Если A, B, C — любые три из них, то внутри треугольника ABC нет ни одной точки из данных. Доказать, что эти точки можно занумеровать так, что многоугольник A1A2...An будет выпуклым.

ВверхВниз   Решение


Автор: Тыщук К.

Дано натуральное число  n > 3.  Назовём набор из n точек на координатной плоскости допустимым, если их абсциссы различны, и каждая из этих точек окрашена либо в красный, либо в синий цвет. Будем говорить, что многочлен P(x) разделяет допустимый набор точек, если либо выше графика P(x) нет красных точек, а ниже – нет синих, либо наоборот (на самом графике могут лежать точки обоих цветов). При каком наименьшем k любой допустимый набор из n точек можно разделить многочленом степени не более k?

ВверхВниз   Решение


Автор: Нилов Ф.

На поверхности равногранного тетраэдра сидят два муравья. Докажите, что они могут встретиться, преодолев в сумме расстояние, не превосходящее диаметра окружности, описанной около грани тетраэдра.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 109359

Темы:   [ Развертка помогает решить задачу ]
[ Равногранный тетраэдр ]
Сложность: 3
Классы: 10,11

Докажите, что если суммы плоских углов при трёх вершинах треугольной пирамиды равны по 180o , то все грани этой пирамиды – равные треугольники (т.е. тетраэдр является равногранным).
Прислать комментарий     Решение


Задача 110307

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Равногранный тетраэдр ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Два противоположных ребра треугольной пирамиды равны a , два других противоположных ребра равны b , два оставшихся равны c . Найдите косинус угла между рёбрами, равными a .
Прислать комментарий     Решение


Задача 66412

Темы:   [ Кратчайший путь по поверхности ]
[ Равногранный тетраэдр ]
[ Сечения, развертки и остовы (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Нилов Ф.

На поверхности равногранного тетраэдра сидят два муравья. Докажите, что они могут встретиться, преодолев в сумме расстояние, не превосходящее диаметра окружности, описанной около грани тетраэдра.
Прислать комментарий     Решение


Задача 87062

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Равногранный тетраэдр ]
Сложность: 4
Классы: 8,9

В треугольной пирамиде противоположные рёбра попарно равны. Докажите, что центры описанной и вписанной сфер совпадают.
Прислать комментарий     Решение


Задача 87065

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Равногранный тетраэдр ]
Сложность: 4
Классы: 8,9

Докажите, что все грани тетраэдра равны (т.е. тетраэдр – равногранный) тогда и только тогда, когда точка пересечения медиан и центр описанной сферы совпадают.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .