ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Окружность, вписанная в треугольник, точкой касания делит одну из сторон на отрезки, равные 3 и 4, а противолежащий этой стороне угол равен 120o . Найдите площадь треугольника.

Вниз   Решение


Целые числа m и n таковы, что сумма     целая. Верно ли, что оба слагаемых целые?

ВверхВниз   Решение


У треугольника известны стороны  a = 2,  b = 3  и площадь  S = .  Медиана, проведённая к его третьей стороне, меньше её половины.
Найдите радиус описанной окружности этого треугольника .

ВверхВниз   Решение


Автор: Шноль Д.Э.

Приведите пример таких целых чисел $a$, $b$, $c$, $d$, среди которых нет одинаковых, что $a^b=c^d$ и $b^a=d^c$.

ВверхВниз   Решение


Существуют ли такие иррациональные числа a и b, что степень ab - число рациональное?

ВверхВниз   Решение


Докажите, что для любых различных натуральных чисел $m$ и $n$ справедливо неравенство $|\sqrt[n]{m}-\sqrt[m]{n}|>\frac{1}{mn}$.

ВверхВниз   Решение


В ромбе ABCD угол при вершине A равен 60°. Точка N делит сторону AB в отношении  AN : BN = 2 : 1.  Найдите тангенс угла DNC.

ВверхВниз   Решение


Докажите иррациональность следующих чисел:

а)   ;

б)   ;

в)   ;

г)   ;

д)  cos 10° ;

е)  tg 10° ;

ж)  sin 1° ;

з)  log23 .

ВверхВниз   Решение


Для тестирования новой программы компьютер выбирает случайное действительное число A из отрезка  [1, 2]  и заставляет программу решать уравнение  3x + A = 0.  Найдите вероятность того, что корень этого уравнения меньше чем –0,4.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 132]      



Задача 65331

Тема:   [ Дискретное распределение ]
Сложность: 2+
Классы: 8,9,10,11

Вася написал на листке бумаги записку, сложил её вчетверо, надписал сверху "МАМЕ" (см. фото). Затем он развернул записку, дописал ещё кое-что, опять сложил записку по линиям сгиба случайным образом (не обязательно, как раньше) и оставил на столе, положив случайной стороной вверх. Найдите вероятность того, что надпись "МАМЕ" по-прежнему сверху.

Прислать комментарий     Решение

Задача 66038

Тема:   [ Непрерывное распределение ]
Сложность: 2+
Классы: 8,9

Для тестирования новой программы компьютер выбирает случайное действительное число A из отрезка  [1, 2]  и заставляет программу решать уравнение  3x + A = 0.  Найдите вероятность того, что корень этого уравнения меньше чем –0,4.

Прислать комментарий     Решение

Задача 60430

Тема:   [ Теория вероятностей (прочее) ]
Сложность: 2+
Классы: 8,9,10

Имеется три ящика, в каждом из которых лежат шары с номерами от 0 до 9. Из каждого ящика вынимается по одному шару. Какова вероятность того, что
а) вынуты три единицы;
б) вынуты три равных числа?

Прислать комментарий     Решение

Задача 60431

Тема:   [ Теория вероятностей (прочее) ]
Сложность: 3-
Классы: 8,9,10

У игрока в преферанс оказалось 4 козыря, а еще 4 находятся на руках у двух его противников. Какова вероятность того, что козыри лягут а) 2 : 2; б) 3 : 1; в) 4 : 0?

Прислать комментарий     Решение


Задача 60429

Тема:   [ Теория вероятностей (прочее) ]
Сложность: 3
Классы: 8,9,10

Пишется наудачу некоторое двузначное число. Какова вероятность того, что сумма цифр этого числа равна 5?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .