ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Незнайка хвастал своими выдающимися способностями умножать числа "в уме". Чтобы его проверить, Знайка предложил ему написать какое-нибудь число, перемножить его цифры и сказать результат. – "1210", – немедленно выпалил Незнайка. – "Ты неправ!" – сказал, подумав, Знайка. Как он обнаружил ошибку, не зная исходного числа?

Вниз   Решение


В обыкновенном наборе домино 28 косточек. Сколько косточек содержал бы набор домино, если бы значения, указанные на косточках, изменялись не от 0 до 6, а от 0 до 12?

ВверхВниз   Решение


На какое максимальное число кусков можно разделить круглый блинчик при помощи трех прямолинейных разрезов?

ВверхВниз   Решение


Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?

ВверхВниз   Решение


Найти все такие натуральные числа p, что p и  2p² + 1  – простые.

ВверхВниз   Решение


Имеются две одинаковых шестеренки по 14 зубьев на общей оси. Их совместили и выбили четыре пары зубьев.
Доказать, что шестеренки можно повернуть так, что они образуют полноценную шестеренку (без дырок).

ВверхВниз   Решение


Пусть a, b, c – стороны треугольника, p – его полупериметр, а r и R – радиусы вписанной и описанной окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство

ВверхВниз   Решение


Найдите значение выражения 1!*3-2!*4+3!*5-4!*6+...-2000!*2002+2001!.

ВверхВниз   Решение


Встречается ли в треугольнике Паскаля число 1999?

ВверхВниз   Решение


Автор: Фомин С.В.

Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?

ВверхВниз   Решение


В наборе  –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5  замените одно число двумя другими целыми числами так, чтобы дисперсия набора и его среднее не изменились.

ВверхВниз   Решение


Легко проверить равенства

log$\displaystyle \left(\vphantom{16+\dfrac{16}{15}}\right.$16 + $\displaystyle {\textstyle\dfrac{16}{15}}$$\displaystyle \left.\vphantom{16+\dfrac{16}{15}}\right)$ = log 16 + log$\displaystyle {\textstyle\dfrac{16}{15}}$;     log$\displaystyle \left(\vphantom{\dfrac{64}7-8}\right.$$\displaystyle {\textstyle\dfrac{64}{7}}$ - 8$\displaystyle \left.\vphantom{\dfrac{64}7-8}\right)$ = log$\displaystyle {\textstyle\dfrac{64}{7}}$ - log 8.

В каких еще случаях можно выносить логарифм за скобку?

ВверхВниз   Решение


Прямоугольный параллелепипед размером m×n×k разбит на единичные кубики. Сколько всего образовалось параллелепипедов (включая исходный)?

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 157]      



Задача 65185

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 3+
Классы: 9,10,11

Прямоугольный параллелепипед размером m×n×k разбит на единичные кубики. Сколько всего образовалось параллелепипедов (включая исходный)?

Прислать комментарий     Решение

Задача 66350

Темы:   [ Правило произведения ]
[ Комбинаторика орбит ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

В зале стоят шесть стульев в два ряда – по три стула в каждом, один ряд ровно за другим. В зал пришли шесть человек различного роста.
Сколькими способами можно рассадить их так, чтобы каждый человек, сидящий в первом ряду, был ниже человека, сидящего за ним?

Прислать комментарий     Решение

Задача 108413

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
[ Комбинаторика орбит ]
[ Остовы многогранных фигур ]
Сложность: 3+
Классы: 7,8,9

Фабрика игрушек выпускает проволочные кубики, в вершинах которых расположены маленькие разноцветные шарики. По ГОСТу в каждом кубике должны быть использованы шарики всех восьми цветов (белого и семи цветов радуги). Сколько разных моделей кубиков может выпускать фабрика?

Прислать комментарий     Решение

Задача 66861

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 4-
Классы: 8,9,10,11

К Ивану на день рождения пришли 2$N$ гостей. У Ивана есть $N$ чёрных и $N$ белых цилиндров. Он хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или несколько) так, чтобы в каждом хороводе было хотя бы два человека и люди в цилиндрах одного цвета не стояли в хороводе рядом. Докажите, что Иван может устроить бал ровно $(2N)!$ различными способами. (Цилиндры одного цвета неразличимы; все гости различимы.)

Прислать комментарий     Решение

Задача 74200

Темы:   [ Правило произведения ]
[ Разбиения на пары и группы; биекции ]
[ Комбинаторика орбит ]
[ Теорема Лагранжа ]
[ Числовые таблицы и их свойства ]
Сложность: 4

Световое табло состоит из нескольких ламп, каждая из которых может находиться в двух состояниях (гореть или не гореть). На пульте несколько кнопок, при нажатии каждой из которых одновременно меняется состояние некоторого набора ламп (для каждой кнопки – своего). Вначале лампы не горят.
  а) Докажите, что число различных узоров, которые можно получить на табло, – степень двойки.
  б) Сколько различных узоров можно получить на табло, состоящем из mn лампочек, расположенных в форме прямоугольника размером m×n, если кнопками можно переключить как любой горизонтальный, так и любой вертикальный ряд ламп?

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .