ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

На стороне BC и на продолжении стороны AB за вершину B треугольника ABC расположены точки M и K соответственно, причём  BM : MC = 4 : 5  и  BK : AB = 1 : 5.  Прямая KM пересекает сторону AC в точке N. Найдите отношение  CN : AN.

Вниз   Решение


Докажите, что при  a, b, c > 0  имеет место неравенство  

ВверхВниз   Решение


Заполните свободные клетки "шестиугольника" (см. рисунок) целыми числами от 1 до 19 так, чтобы во всех вертикальных и диагональных рядах сумма чисел, стоящих в одном ряду, была бы одна и та же.

ВверхВниз   Решение


Постройте окружность данного радиуса, проходящую через данную точку и касающуюся данной прямой.

ВверхВниз   Решение


Найдите остаток от деления 2100 на 101.

ВверхВниз   Решение


В турнире участвовали шесть шахматистов. Каждые два участника турнира сыграли между собой по одной партии. Сколько всего было сыграно партий? Сколько партий сыграл каждый участник? Сколько очков набрали шахматисты все вместе?

ВверхВниз   Решение


В треугольнике DEF проведена медиана DK. Найдите углы треугольника, если  ∠KDE = 70°,  ∠DKF = 140°.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 240]      



Задача 53440

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Прямая, проходящая через вершину A треугольника ABC, пересекает сторону BC в точке M, причём  BM = AB.
Найдите разность углов BAM и CAM, если  ∠C = 25°.

Прислать комментарий     Решение

Задача 53444

Тема:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

BK – биссектриса треугольника ABC. Известно, что  ∠AKB : ∠CKB = 4 : 5.  Найдите разность углов A и C треугольника ABC.

Прислать комментарий     Решение

Задача 64786

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 2+
Классы: 6,7,8

В треугольнике DEF проведена медиана DK. Найдите углы треугольника, если  ∠KDE = 70°,  ∠DKF = 140°.

Прислать комментарий     Решение

Задача 116149

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2+
Классы: 7,8,9

Дан квадрат ABCD. На стороне AD внутрь квадрата построен равносторонний треугольник ADE. Диагональ AC пересекает сторону ED этого треугольника в точке F. Докажите, что  CE = CF.

Прислать комментарий     Решение

Задача 35486

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 240]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .