ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету?

Вниз   Решение


Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников?

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что  AC1 = BA1 = CB1.  Докажите, что треугольник ABC правильный.

ВверхВниз   Решение


Является ли число степенью двойки?

Вводится число. Напечатать YES, если оно является степенью двойки,
NO - иначе

Пример входного файла
8

Пример выходного файла
YES



Пример входного файла
22

Пример выходного файла
NO

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 55]      



Задача 76209

Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
[ НОД и НОК. Алгоритм Евклида ]
Сложность: 2-

Даны два натуральных числа a и b, не равные нулю одновременно. Вычислить НОД(a,b) — наибольший общий делитель а и b.
Прислать комментарий     Решение


Задача 76210

Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
[ НОД и НОК. Алгоритм Евклида ]
Сложность: 2-

Написать модифицированный вариант алгоритма Евклида, использующий соотношения НОД(a,b) = НОД(a mod b, b) при a≥b, НОД(a,b) = НОД(a, b mod a) при b≥a.
Прислать комментарий     Решение


Задача 76219

Темы:   [ Знакомство с циклами ]
[ Условный оператор ]
[ Задачи с целыми числами ]
Сложность: 2-

Составить программу решения предыдущей задачи, использующую тот факт, что составное число имеет делитель, не превосходящий квадратного корня из этого числа.
Прислать комментарий     Решение


Задача 64126

 [Степень двойки?]
Темы:   [ Знакомство с циклами ]
[ Условный оператор ]
Сложность: 2
Классы: 8

Является ли число степенью двойки?

Вводится число. Напечатать YES, если оно является степенью двойки,
NO - иначе

Пример входного файла
8

Пример выходного файла
YES



Пример входного файла
22

Пример выходного файла
NO
Прислать комментарий     Решение

Задача 64127

 [Сумма цифр]
Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
Сложность: 2
Классы: 8

Посчитать сумму цифр числа

Вводится число. Вывести сумму его цифр

Пример входного файла
157

Пример выходного файла
13
Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .