ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В прямоугольном треугольнике ABC проведена биссектриса прямого угла CL. Из вершины A ( $ \angle$A > 45o) на CL опущен перпендикуляр AD. Найдите площадь треугольника ABC, если AD = a, CL = b.

Вниз   Решение


Окружность с центром O , вписанная в четырёхугольник ABCD , касается сторон AB , BC , CD и AD в точках K , L , M и N соответственно. Отрезок KN делит OA пополам, отрезок KL делит OB пополам, а отрезок MN делит OD в отношении 1:3, считая от точки O . Найдите углы четырёхугольника ABCD .

ВверхВниз   Решение


Из точки A проведены касательные AB и AC к окружности с центром O. Докажите, что если из точки M отрезок AO виден под углом  90o, то отрезки OB и OC видны из нее под равными углами.

ВверхВниз   Решение


Докажите, что уравнение   x/y + y/z + z/x = 1   неразрешимо в натуральных числах.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 368]      



Задача 30653

Тема:   [ Уравнения в целых числах ]
Сложность: 2
Классы: 6,7

Фишка стоит на одном из полей бесконечной в обе стороны клетчатой полоски бумаги. Она может сдвигаться на m полей вправо или на n полей влево.
При каких m и n она сможет переместиться в соседнюю справа клетку?

Прислать комментарий     Решение

Задача 32987

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 2
Классы: 7,8,9

Докажите, что уравнение  3x² + 2 = y²  нельзя решить в целых числах.

Прислать комментарий     Решение

Задача 61399

Темы:   [ Уравнения в целых числах ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 2
Классы: 8,9,10

Докажите, что уравнение   x/y + y/z + z/x = 1   неразрешимо в натуральных числах.

Прислать комментарий     Решение

Задача 87998

Темы:   [ Уравнения в целых числах ]
[ Системы линейных уравнений ]
[ Перебор случаев ]
Сложность: 2
Классы: 6,7

Попробуйте разменять 25-рублёвую купюру одиннадцатью купюрами достоинством 1, 3 и 5 рублей.

Прислать комментарий     Решение

Задача 88058

Темы:   [ Уравнения в целых числах ]
[ Задачи-шутки ]
Сложность: 2
Классы: 5,6,7

В комнате стоят трёхногие табуретки и четвероногие стулья. Когда на все эти сидячие места уселись люди, в комнате оказалось 39 ног.
Сколько в комнате табуреток?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 368]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .