|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Натуральное число называется совершенным, если оно равно сумме все своих собственных делителей, включая 1. Напечатать все совершенные числа, меньшие, чем заданное число М. Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе? В вершинах правильного 1983-угольника расставлены числа 1, 2, ..., 1983. Любая его ось симметрии делит числа, не лежащие на ней, на два множества. Назовём расстановку "хорошей" относительно данной оси симметрии, если каждое число одного множества больше симметричного ему числа. Существует ли расстановка, являющаяся "хорошей" относительно любой оси симметрии? Может ли быть так, что а) σ(n) > 3n; б) σ(n) > 100n? |
Страница: 1 [Всего задач: 3]
Преобразовав равенство (12.1 ), можно получить уравнение, из которого находится S:
S = 1 - (1 - 1 + 1 - 1 +...) = 1 - S Сумму S можно также найти
объединяя слагаемые ряда (12.1
) в пары:
S = - 1 + 1 - 1 + 1 - 1 +...= - 1 + (1 - 1) + (1 - 1) +...= - 1.
Итак, действуя четырьмя разными способами, мы нашли четыре
значения суммы S:
S = Какое же значение
имеет сумма S в действительности?
Найдите суммы рядов а) б) в)
Может ли быть так, что а) σ(n) > 3n; б) σ(n) > 100n?
Страница: 1 [Всего задач: 3] |
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|