|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите равенство треугольников по стороне и медианам, проведённым к двум другим сторонам. Отрезок EF параллелен плоскости, в которой лежит прямоугольник ABCD , причём EF = 2 , AB = 4 . Все стороны прямоугольника ABCD и отрезки AE , BE , CF , DF , EF касаются некоторого шара. Найдите объём этого шара. В основании треугольной пирамиды ABCD лежит треугольник ABC , в котором В сумме + 1 + 3 + 9 + 27 + 81 + 243 + 729 можно вычеркивать любые слагаемые и изменять некоторые знаки перед оставшимися числами с "+" на "–". Маша хочет таким способом сначала получить выражение, значение которого равно 1, затем, начав сначала, получить выражение, значение которого равно 2, затем (снова начав сначала) получить 3, и так далее. До какого наибольшего целого числа ей удастся это сделать без пропусков? Пассажир оставил вещи в автоматической камере хранения, а когда пришёл получать вещи, выяснилось, что он забыл номер. Он только помнит, что в номере были числа 23 и 37. Чтобы открыть камеру, нужно правильно набрать пятизначный номер. Каково наименьшее количество номеров нужно перебрать, чтобы наверняка открыть камеру? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
Пассажир оставил вещи в автоматической камере хранения, а когда пришёл получать вещи, выяснилось, что он забыл номер. Он только помнит, что в номере были числа 23 и 37. Чтобы открыть камеру, нужно правильно набрать пятизначный номер. Каково наименьшее количество номеров нужно перебрать, чтобы наверняка открыть камеру?
Внутри квадрата со стороной 2 расположено семь многоугольников площадью не менее 1 каждый.
Петя и ещё 9 человек играют в такую игру: каждый бросает игральную кость. Игрок
получает приз, если он выбросил число очков, которое не удалось выбросить никому больше.
Неправдоподобная легенда гласит, что однажды Стирлинг размышлял над числами Стирлинга второго рода и в задумчивости бросал на стол 10 правильных игральных костей. После очередного броска он вдруг заметил, что в выпавшей комбинации очков присутствуют все числа от 1 до 6. Тут же Стирлинг задумался, а какова же вероятность такого события? Какова вероятность, что при бросании 10 костей каждое число очков от 1 до 6 выпадет хотя бы на одной кости?
Пусть
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|