|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть a, b, c, а) S ≤ ab + cd; б) S ≤ ac + bd. в) Докажите, что если хотя бы в одном из этих неравенств достигается равенство, то четырёхугольник можно вписать в окружность. Докажите, что многочлен P(x) = (xn+1 – 1)(xn+2 – 1)...(xn+m – 1) делится на Q(x) = (x – 1)(x2 – 1)...(xm – 1). Решите уравнение f(f(x)) = f(x), если |
Страница: << 3 4 5 6 7 8 9 [Всего задач: 42]
Петя собирается все 90 дней каникул провести в деревне и при этом каждый второй день (то есть через день) ходить купаться на озеро, каждый третий – ездить в магазин за продуктами, а каждый пятый день – решать задачи по математике. (В первый день Петя сделал и первое, и второе, и третье и очень устал.) Сколько будет у Пети "приятных" дней, когда нужно будет купаться, но не нужно ни ездить в магазин, ни решать задачи? Сколько "скучных", когда совсем не будет никаких дел?
m и n – натуральные числа, m < n. Докажите, что
Страница: << 3 4 5 6 7 8 9 [Всего задач: 42] |
||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|