ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Во входном файле записана последовательность чисел в странном формате:
у каждого числа сначала записано количество цифр в этом числе, а потом через
пробел - сами цифры. Последовательность заканчивается числом 0.

В выходной файл нужно вывести сначала количество чисел в последовательности,
а потом - сами числа.

Количество чисел в последовательности не превышает 1000. В числах - не более
4-х знаков.

Примеры:
Пример 1
   input.txt                         output.txt              
2 2 7 3 3 5 1 0                      2 27 351                              

Пример 2
   input.txt                         output.txt              
1 1 0                                1 1                                    

Пример 3
   input.txt                         output.txt              
4 1 2 3 4 2 4 3 0                    2 1234 43                              

Вниз   Решение


Числа от 1 до 1000000 покрашены в два цвета – чёрный и белый. За ход разрешается выбрать любое число от 1 до 1000000 и перекрасить его и все числа, не взаимно простые с ним, в противоположный цвет. Вначале все числа были чёрными. Можно ли за несколько ходов добиться того, что все числа станут белыми?

ВверхВниз   Решение


На отрезке AE по одну сторону от него построены равносторонние треугольники ABC и CDE; M и P — середины отрезков AD и BE. Докажите, что треугольник CPM равносторонний.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50]      



Задача 57927

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 9

На сторонах треугольника ABC внешним образом построены правильные треугольники A1BC, AB1C и ABC1. Докажите, что AA1 = BB1 = CC1.
Прислать комментарий     Решение


Задача 57928

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 9

На отрезке AE по одну сторону от него построены равносторонние треугольники ABC и CDE; M и P — середины отрезков AD и BE. Докажите, что треугольник CPM равносторонний.
Прислать комментарий     Решение


Задача 57929

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 9

Постройте равносторонний треугольник ABC так, чтобы его вершины лежали на трех данных параллельных прямых.
Прислать комментарий     Решение


Задача 57930

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 9

Рассмотрим всевозможные равносторонние треугольники PKM, вершина P которых фиксирована, а вершина K лежит в данном квадрате. Найдите геометрическое место вершин M.
Прислать комментарий     Решение


Задача 57931

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 9

На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCP и CDQ. Докажите, что треугольник APQ правильный.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .