ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Один треугольник лежит внутри другого.
Докажите, что хотя бы одна из двух наименьших сторон (из шести) является стороной внутреннего треугольника.

Вниз   Решение


Треугольники ABC1 и ABC2 имеют общее основание AB и  $ \angle$AC1B = $ \angle$AC2B. Докажите, что если | AC1 - C1B| < | AC2 - C2B|, то:
а) площадь треугольника ABC1 больше площади треугольника ABC2;
б) периметр треугольника ABC1 больше периметра треугольника ABC2.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 57567

Тема:   [ Экстремальные свойства правильных многоугольников ]
Сложность: 4+
Классы: 8,9

Треугольники ABC1 и ABC2 имеют общее основание AB и  $ \angle$AC1B = $ \angle$AC2B. Докажите, что если | AC1 - C1B| < | AC2 - C2B|, то:
а) площадь треугольника ABC1 больше площади треугольника ABC2;
б) периметр треугольника ABC1 больше периметра треугольника ABC2.
Прислать комментарий     Решение


Задача 57566

Тема:   [ Экстремальные свойства правильных многоугольников ]
Сложность: 6
Классы: 8,9

а) Докажите, что среди всех n-угольников, описанных около данной окружности, наименьшую площадь имеет правильный n-угольник.
б) Докажите, что среди всех n-угольников, описанных около данной окружности, наименьший периметр имеет правильный n-угольник.
Прислать комментарий     Решение


Задача 57568

Тема:   [ Экстремальные свойства правильных многоугольников ]
Сложность: 6+
Классы: 8,9

а) Докажите, что среди всех n-угольников, вписанных в данную окружность, наибольшую площадь имеет правильный n-угольник.
б) Докажите, что среди всех n-угольников, вписанных в данную окружность, наибольший периметр имеет правильный n-угольник.
Прислать комментарий     Решение


Задача 57082

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Наибольшая или наименьшая длина ]
[ Векторы помогают решить задачу ]
[ Экстремальные свойства правильных многоугольников ]
Сложность: 4
Классы: 9,10

Докажите, что сумма расстояний от произвольной точки X до вершин правильного n-угольника будет наименьшей, если X – центр n-угольника.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .