ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Перемножаются все выражения вида     (при всевозможных комбинациях знаков).
Докажите, что результат   а) целое число,   б) квадрат целого числа.

Вниз   Решение


Положительные числа A, B, C и D таковы, что система уравнений
    x² + y² = A,
    |x| + |y| = B
имеет m решений, а система уравнений
    x² + y² + z² = C,
    |x| + |y| + |z| = D
имеет n решений. Известно, что  m > n > 1.  Найдите m и n.

ВверхВниз   Решение


Квадрат разбит прямыми на 25 квадратиков-клеток. В некоторых клетках нарисована одна из диагоналей так, что никакие две диагонали не имеют общей точки (даже общего конца). Каково наибольшее возможное число нарисованных диагоналей?

ВверхВниз   Решение


Длины сторон треугольника ABC не превышают 1.
Докажите, что  p(1 – 2Rr) ≥ 1,  где p – полупериметр, R и r – радиусы описанной и вписанной окружностей треугольника ABC.

ВверхВниз   Решение


CM и BN – медианы треугольника ABC, P и Q – такие точки соответственно на AB и AC, что биссектриса угла C треугольника одновременно является биссектрисой угла MCP, а биссектриса угла B – биссектрисой угла NBQ. Оказалось, что  AP = AQ.  Следует ли из этого, что треугольник ABC равнобедренный?

ВверхВниз   Решение


Докажите, что  $ {\frac{9r}{2S}}$ $ \leq$ $ {\frac{1}{a}}$ + $ {\frac{1}{b}}$ + $ {\frac{1}{c}}$ $ \leq$ $ {\frac{9R}{4S}}$.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



Задача 57431

Тема:   [ Длины сторон (неравенства) ]
Сложность: 3
Классы: 8,9

Докажите, что  $ {\frac{9r}{2S}}$ $ \leq$ $ {\frac{1}{a}}$ + $ {\frac{1}{b}}$ + $ {\frac{1}{c}}$ $ \leq$ $ {\frac{9R}{4S}}$.
Прислать комментарий     Решение


Задача 35209

Темы:   [ Длины сторон (неравенства) ]
[ Построения (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3
Классы: 8,9,10

На плоскости нарисован острый угол с вершиной в точке O и точка P внутри него. Постройте точки A и B на сторонах угла так, чтобы треугольник PAB имел наименьший возможный периметр.
Прислать комментарий     Решение


Задача 66242

Темы:   [ Длины сторон (неравенства) ]
[ Формулы для площади треугольника ]
Сложность: 3+
Классы: 8,9

Длины сторон треугольника ABC не превышают 1.
Докажите, что  p(1 – 2Rr) ≥ 1,  где p – полупериметр, R и r – радиусы описанной и вписанной окружностей треугольника ABC.

Прислать комментарий     Решение

Задача 35243

Темы:   [ Длины сторон (неравенства) ]
[ Окружности (прочее) ]
[ Окружности (построения) ]
Сложность: 3+
Классы: 7,8,9

Через две точки, лежащие в круге, провести окружность, лежащую целиком в том же круге.
Прислать комментарий     Решение


Задача 65824

Темы:   [ Длины сторон (неравенства) ]
[ Неравенства для углов треугольника ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8

Продолжения сторон AB и CD выпуклого четырёхугольника ABCD пересекаются в точке K. Известно, что  AD = BC.  Пусть M и N – середины сторон AB и CD. Докажите, что треугольник MNK тупоугольный.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .