ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

В квадрате ABCD точки K и M принадлежат сторонам BC и CD соответственно, причём AM – биссектриса угла KAD.
Докажите, что  AK = DM + BK.

Вниз   Решение


Пусть M и N – середины сторон CD и DE правильного шестиугольника ABCDEF. Найдите угол между прямыми AM и BN.

ВверхВниз   Решение


С помощью циркуля и линейки через точку внутри данного круга проведите хорду, отсекающую от окружности дугу заданной угловой величины.

ВверхВниз   Решение


Даны различные натуральные числа a, b. На координатной плоскости нарисованы графики функций  y = sin axy = sin bx  и отмечены все точки их пересечения. Докажите, что существует натуральное число c, отличное от a, b и такое, что график функции  y = sin cx  проходит через все отмеченные точки.

ВверхВниз   Решение


Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными?

ВверхВниз   Решение


Решить уравнение  [x³] + [x²] + [x] = {x} − 1.

ВверхВниз   Решение


Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза?

ВверхВниз   Решение


Докажите, что в выпуклый четырехугольник ABCD можно вписать окружность тогда и только тогда, когда  AB + CD = BC + AD.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 509]      



Задача 55374

Темы:   [ Пятиугольники ]
[ Векторы помогают решить задачу ]
Сложность: 2-
Классы: 8,9

В выпуклом пятиугольнике ABCDE с единичными сторонами середины P, Q сторон AB, CD и середины S, T сторон BC, DE соединены отрезками PQ и ST. Пусть M и N – середины отрезков PQ и ST. Найдите длину отрезка MN.

Прислать комментарий     Решение

Задача 57005

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что выпуклый четырехугольник ABCD можно вписать в окружность тогда и только тогда, когда  $ \angle$ABC + $ \angle$CDA = 180o.
Прислать комментарий     Решение


Задача 57006

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что в выпуклый четырехугольник ABCD можно вписать окружность тогда и только тогда, когда  AB + CD = BC + AD.
Прислать комментарий     Решение


Задача 57007

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

а) Докажите, что оси симметрии правильного многоугольника пересекаются в одной точке.

б) Докажите, что правильный 2n-угольник имеет центр симметрии.
Прислать комментарий     Решение


Задача 57008

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 7,8,9

а) Докажите, что сумма углов при вершинах выпуклого n-угольника равна  (n - 2) . 180o.
б) Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Докажите, что количество этих треугольников равно n - 2.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 509]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .