|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть l1, l2 и l3 — соответственные прямые подобных фигур F1, F2 и F3, пересекающиеся в точке W. а) Докажите, что точка W лежит на окружности подобия фигур F1, F2 и F3. б) Пусть J1, J2 и J3 — точки пересечения прямых l1, l2 и l3 с окружностью подобия, отличные от точки W. Докажите, что эти точки зависят только от фигур F1, F2 и F3 и не зависят от выбора прямых l1, l2 и l3.
Докажите, что отношение суммы квадратов медиан треугольника
к сумме квадратов его сторон равно
|
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
Стороны треугольника равны a, b, c. Докажите, что медиана,
проведённая к стороне c, равна
Стороны треугольника равны 11, 13 и 12. Найдите медиану, проведённую к большей стороне.
В треугольнике две стороны равны 11 и 23, а медиана, проведённая к третьей, равна 10. Найдите третью сторону.
Докажите, что отношение суммы квадратов медиан треугольника
к сумме квадратов его сторон равно
В треугольнике ABC на сторонах AB, BC и AD взяты соответственно точки K, L и M. Известно, что AK = 5, KB = 3, BL = 2, LC = 7, CM = 1, MA = 6, Найдите расстояние от точки M до середины KL.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|