ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.
Может ли сумма получившихся 14 чисел оказаться равной 0?

Вниз   Решение


В трёх ящиках лежат орехи. В первом ящике на 6 кг орехов меньше, чем в двух других вместе. А во втором – на 10 кг меньше, чем в двух других вместе. Сколько орехов в третьем ящике?

ВверхВниз   Решение


Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.

ВверхВниз   Решение


Найти сумму 1 + 2002 + 20022 + ... + 2002n.

ВверхВниз   Решение


Несколько прямых делят плоскость на части. Докажите, что эти части можно раскрасить в 2 цвета так, что граничащие части будут иметь разный цвет.

ВверхВниз   Решение


Из точки M проведены касательные MA и MB к окружности с центром O (A и B – точки касания). Найдите радиус окружности, если  ∠AMB = α  и  AB = a.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 175]      



Задача 52884

Темы:   [ Признаки и свойства касательной ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

К окружности радиуса 36 проведена касательная из точки, удаленной от центра на расстояние, равное 85. Найдите длину касательной.

Прислать комментарий     Решение

Задача 53958

Темы:   [ Признаки и свойства касательной ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 2+
Классы: 8,9

Докажите, что касательные к окружности, проведённые через концы диаметра, параллельны.

Прислать комментарий     Решение

Задача 54218

Темы:   [ Признаки и свойства касательной ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 2+
Классы: 8,9

Из точки M проведены касательные MA и MB к окружности с центром O (A и B – точки касания). Найдите радиус окружности, если  ∠AMB = α  и  AB = a.

Прислать комментарий     Решение

Задача 52538

Темы:   [ Признаки и свойства касательной ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2+
Классы: 8,9

Из точки, расположенной вне окружности, проведены к окружности две взаимно перпендикулярные касательные. Радиус окружности равен 10. Найдите длину каждой касательной.

Прислать комментарий     Решение


Задача 52584

Темы:   [ Признаки и свойства касательной ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 2+
Классы: 8,9

AB — диаметр окружности, BC — касательная. Секущая AC делится окружностью в точке D пополам. Найдите угол DAB.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 175]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .