|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Заполните свободные клетки "шестиугольника" (см. рисунок) целыми числами от 1 до 19 так, чтобы во всех вертикальных и диагональных рядах сумма чисел, стоящих в одном ряду, была бы одна и та же. Даны две непересекающиеся окружности с центрами в точках O1 и O2. Пусть a1 и a2 — внутренние касательные к этим окружностям, a3 и a4 — внешние касательные к ним. Пусть, далее, a5 и a6 — касательные к окружности с центром в O1, проведённые из точки O2, a7 и a8 — касательные к окружности с центром в точке O2, проведённые из точки O1. Обозначим через O точку пересечения a1 и a2. Доказать, что с центром в точке O можно провести две окружности так, чтобы первая касалась a3 и a4, вторая касалась a5, a6, a7, a8, причём радиус второй в два раза меньше радиуса первой. Числа a1, a2, ..., ak таковы, что равенство
P(
по модулю меньше 1.
Найдите расстояние от центра окружности радиуса 10 до хорды, равной 12. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 543]
На высоте AH треугольника ABC взята точка M. Докажите, что AB² – AC² = MB² – MC².
Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра.
Найдите диагональ прямоугольника со сторонами 5 и 12.
Найдите расстояние от центра окружности радиуса 10 до хорды, равной 12.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 543] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|