|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть (n, 10) = 1, m < n, (m, n) = 1, и t – наименьшее число, при котором 10t – 1 делится на n. а) В группе из четырёх человек, говорящих на разных языках, любые трое могут общаться (возможно, один переводит двум другим). Около круга описана трапеция, периметр которой равен 12. Найдите среднюю линию трапеции.
Дан угол и две точки внутри него. Постройте окружность, проходящую через эти точки и высекающую на сторонах угла равные отрезки. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 67]
Найдите внутри треугольника ABC все такие точки P, чтобы общие хорды каждой пары окружностей, построенных на отрезках PA, PB и PC как на диаметрах, были равны.
Дан прямоугольный треугольник ABC с прямым углом при вершине C. ∠A = α, биссектриса угла B пересекает катет AC в точке K. На стороне BC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке M. Найдите угол AMK.
Равные хорды окружности с центром O пересекаются в точке M. Докажите, что MO – биссектриса угла между ними.
Дан угол и две точки внутри него. Постройте окружность, проходящую через эти точки и высекающую на сторонах угла равные отрезки.
Высота AA', медиана BB' и биссектриса CC' треугольника ABC пересекаются в точке K. Известно, что A'K = B'K.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 67] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|