|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что если n – чётное совершенное число, то оно имеет вид n = 2k–1(2k – 1), и p = 2k – 1 – простое число Мерсенна. Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена f(x) = anxn + ... + a1x + a0? Рассмотрим лист клетчатой бумаги со стороной клетки, равной 1. Пусть Pk – число всех непересекающихся ломаных длины k, начинающихся в точке O – некотором фиксированном узле сетки. Доказать, что Pk·3–k < 2 для любого k. Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Докажите, что На плоскости синим и красным цветом окрашено несколько точек так, что никакие три точки одного цвета не лежат на одной прямой (точек каждого цвета не меньше трёх). Докажите, что какие-то три точки одного цвета образуют треугольник, на трёх сторонах которого лежит не более двух точек другого цвета. Стороны треугольника равны a, b, c. Известно, что a3=b3+c3. Докажите, что этот треугольник остроугольный. Функция f(x) на отрезке [a, b] равна максимуму из нескольких функций вида y = C·10–|x–d| (с различными d и C, причём все C положительны). Дано,
что Имеется три комплекта домино разного цвета. Как выложить в цепочку (по правилам домино) все эти три комплекта так, чтобы каждые две соседние доминошки имели разный цвет? В параллелограмме со сторонами 2 и 4 проведена диагональ, равная 3. В каждый из получившихся треугольников вписано по окружности. Найдите расстояние между центрами окружностей.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 62]
Найдите площадь параллелограмма, если одна из его сторон равна 51, а диагонали равны 40 и 74.
В треугольнике ABC даны три стороны: AB = 26, BC = 30 и AC = 28. Найдите часть площади этого треугольника, заключённую между высотой и биссектрисой, проведёнными из вершины B.
В параллелограмме со сторонами 2 и 4 проведена диагональ, равная 3. В каждый из получившихся треугольников вписано по окружности. Найдите расстояние между центрами окружностей.
В треугольнике стороны относятся как 2:3:4. В него вписан полукруг с диаметром, лежащим на большей стороне. Найдите отношение площади полукруга к площади треугольника.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 62] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|