ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Докажите, что если n – чётное совершенное число, то оно имеет вид  n = 2k–1(2k – 1),  и  p = 2k – 1  – простое число Мерсенна.

Вниз   Решение


Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена  f(x) = anxn + ... + a1x + a0?

ВверхВниз   Решение


Рассмотрим лист клетчатой бумаги со стороной клетки, равной 1. Пусть Pk – число всех непересекающихся ломаных длины k, начинающихся в точке O – некотором фиксированном узле сетки. Доказать, что  Pk·3k < 2  для любого k.

ВверхВниз   Решение


Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Докажите, что чем больше угол при вершине, тем меньше высота, опущенная на основание.

ВверхВниз   Решение


Докажите, что  $ {\frac{1}{2r}}$ < $ {\frac{1}{h_a}}$ + $ {\frac{1}{h_b}}$ < $ {\frac{1}{r}}$.

ВверхВниз   Решение


На плоскости синим и красным цветом окрашено несколько точек так, что никакие три точки одного цвета не лежат на одной прямой (точек каждого цвета не меньше трёх). Докажите, что какие-то три точки одного цвета образуют треугольник, на трёх сторонах которого лежит не более двух точек другого цвета.

ВверхВниз   Решение


Стороны треугольника равны a, b, c. Известно, что a3=b3+c3. Докажите, что этот треугольник остроугольный.

ВверхВниз   Решение


Функция  f(x) на отрезке [a, b] равна максимуму из нескольких функций вида y = C·10–|x–d| (с различными d и C, причём все C положительны). Дано, что
f(a) = f(b). Докажите, что сумма длин участков, на которых функция возрастает, равна сумме длин участков, на которых функция убывает.

ВверхВниз   Решение


Имеется три комплекта домино разного цвета. Как выложить в цепочку (по правилам домино) все эти три комплекта так, чтобы каждые две соседние доминошки имели разный цвет?

ВверхВниз   Решение


В параллелограмме со сторонами 2 и 4 проведена диагональ, равная 3. В каждый из получившихся треугольников вписано по окружности. Найдите расстояние между центрами окружностей.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 62]      



Задача 54485

Темы:   [ Формула Герона ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Найдите площадь параллелограмма, если одна из его сторон равна 51, а диагонали равны 40 и 74.

Прислать комментарий     Решение

Задача 54487

Темы:   [ Формула Герона ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC даны три стороны:  AB = 26,  BC = 30  и  AC = 28.  Найдите часть площади этого треугольника, заключённую между высотой и биссектрисой, проведёнными из вершины B.

Прислать комментарий     Решение

Задача 53293

Темы:   [ Формула Герона ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

В параллелограмме со сторонами 2 и 4 проведена диагональ, равная 3. В каждый из получившихся треугольников вписано по окружности. Найдите расстояние между центрами окружностей.

Прислать комментарий     Решение


Задача 55505

Темы:   [ Формула Герона ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3+
Классы: 8,9

В треугольнике стороны относятся как 2:3:4. В него вписан полукруг с диаметром, лежащим на большей стороне. Найдите отношение площади полукруга к площади треугольника.

Прислать комментарий     Решение


Задача 109950

Темы:   [ Формула Герона ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Арифметическая прогрессия ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Губин Я.

Длины сторон некоторого треугольника и диаметр вписанной в него окружности являются четырьмя последовательными членами арифметической прогрессии. Найдите все такие треугольники.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 62]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .