Версия для печати
Убрать все задачи
К юбилею Санкт-Петербургских математических олимпиад монетный двор отчеканил три юбилейные монеты. Одна монета получилась правильно, у второй монеты на обеих сторонах оказалось два орла, а у третьей обе стороны – решки. Директор монетного двора не глядя выбрал одну из этих трёх монет и бросил её наудачу. Выпал орёл. Чему равна вероятность того, что на второй стороне этой монеты тоже орёл?

Решение
Дана прямая и две точки A и B, лежащие по одну сторону от этой прямой на равном расстоянии от неё.
Как с помощью циркуля и линейки найти на прямой такую точку C, что произведение AC·BC будет наименьшим?


Решение
Разрежьте квадрат на пять треугольников так, чтобы площадь одного
из этих треугольников равнялась сумме площадей оставшихся.


Решение
Для произвольного числа $x$ рассмотрим сумму
$$Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\ldots+\left\lfloor\frac{x}{10000}\right\rfloor.$$
Найдите разность $Q(2023) – Q(2022)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)


Решение
Дано 100 положительных чисел, сумма которых равна S.
Известно, что каждое из чисел меньше, чем S/99.
Докажите, что сумма любых двух из этих чисел больше,
чем S/99.

Решение